Floatless Level Switch (Compact, Plug-in Type)

61F-GP-N

- Compact: 49.4 × 38 × 84 mm (H×W×D).
- Easy identification of operating status with LED operation indicator.
- Independent DPDT contacts on 11-Pin Models.
- CE marking (N and N8 models) and UL/CSA compliance (N8 models).

⚠️ Refer to Safety Precautions for Floatless Level Controllers.

■ Model Number Legend

<table>
<thead>
<tr>
<th>1. No. of Pins</th>
<th>2. Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>N: 11 pins</td>
<td>Blank: General-purpose</td>
</tr>
<tr>
<td>N8: 8 pins</td>
<td>L 2KM: Long-distance (for 2 km)</td>
</tr>
<tr>
<td></td>
<td>L 4KM: Long-distance (for 4 km)</td>
</tr>
<tr>
<td></td>
<td>H: High-sensitivity</td>
</tr>
<tr>
<td></td>
<td>D: Low-sensitivity</td>
</tr>
<tr>
<td></td>
<td>R: Two-wire</td>
</tr>
<tr>
<td></td>
<td>T: High-temperature</td>
</tr>
</tbody>
</table>

■ Ordering Information

<table>
<thead>
<tr>
<th>Type</th>
<th>General-purpose</th>
<th>Long-distance (for 2 km)</th>
<th>Long-distance (for 4 km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Model</td>
<td>Model</td>
<td>Model</td>
</tr>
<tr>
<td>11-pin</td>
<td>61F-GP-N</td>
<td>61F-GP-NL 2KM</td>
<td>61F-GP-NL 4KM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>High-sensitivity</th>
<th>Low-sensitivity</th>
<th>Two-wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Model</td>
<td>Model</td>
<td>Model</td>
</tr>
<tr>
<td>11-pin</td>
<td>61F-GP-NH</td>
<td>61F-GP-ND</td>
<td>61F-GP-NR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Tropical environments</th>
<th>High-temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Model</td>
<td>Model</td>
</tr>
<tr>
<td>8-pin</td>
<td>61F-GP-N-TDL</td>
<td>61F-GP-NT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>General-purpose</th>
<th>Long-distance (for 2 km)</th>
<th>Long-distance (for 4 km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Model</td>
<td>Model</td>
<td>Model</td>
</tr>
<tr>
<td>8-pin</td>
<td>61F-GP-N8</td>
<td>61F-GP-N8L 2KM</td>
<td>61F-GP-N8L 4KM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>High-sensitivity</th>
<th>Low-sensitivity</th>
<th>Two-wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Model</td>
<td>Model</td>
<td>Model</td>
</tr>
<tr>
<td>8-pin</td>
<td>61F-GP-N8H</td>
<td>61F-GP-N8D</td>
<td>61F-GP-N8R</td>
</tr>
</tbody>
</table>

Note: When ordering, specify the desired operating voltage at the end of the model number.
Example: 61F-GP-N [220 VAC]
Compact Plug-in Models (11-pin Type)

Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>General-purpose Controller 61F-GP-N</th>
<th>High-temperature Controller 61F-GP-NT</th>
<th>Long-distance Controllers 61F-GP-NL 2KM (for 2 km) 61F-GP-NL 4KM (for 4 km)</th>
<th>High-sensitivity Controller 61F-GP-NH (see note 4)</th>
<th>Low-sensitivity Controller 61F-GP-ND</th>
<th>Two-wire Controller 61F-GP-NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlling materials and operating conditions</td>
<td>For control of ordinary purified water or sewage water</td>
<td>For control of ordinary purified water or sewage where operating ambient temperature is high.</td>
<td>For control of ordinary purified water in cases where the distance between sewage pumps and water tanks or between receiver tanks and supply tanks is long or where remote control is required.</td>
<td>For control of liquids with high specific resistance such as distilled water</td>
<td>For control of ordinary purified water or sewage water used in combination with Two-wire Electrode Holder (incorporating a resistor of 6.8 kΩ)</td>
<td></td>
</tr>
<tr>
<td>Supply voltage</td>
<td>24, 100, 110, 120, 200, 220, 230 or 240 VAC; 50/60 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating voltage range</td>
<td>85% to 110% of rated voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interelectrode voltage</td>
<td>8 VAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interelectrode current</td>
<td>Approx. 1 mA AC max.</td>
<td>Approx. 0.12 mA AC max.</td>
<td>Approx. 1 mA AC max.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power consumption</td>
<td>Approx. 3.5 VA max.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interelectrode operate resistance</td>
<td>0 to approx. 4 kΩ</td>
<td>0 to approx. 4 kΩ</td>
<td>0 to approx. 1.3 kΩ (for 2 km) 0 to approx. 0.5 kΩ (for 4 km)</td>
<td>Approx. 10 kΩ to approx. 40 kΩ (see note 3)</td>
<td>0 to approx. 1.3 kΩ</td>
<td>0 to approx. 2 kΩ</td>
</tr>
<tr>
<td>Interelectrode release resistance</td>
<td>Approx. 15 k to ∞ Ω</td>
<td>Approx. 15 k to ∞ Ω</td>
<td>4 k to ∞ Ω (for 2 km) 2.5 k to ∞ Ω (for 4 km)</td>
<td>Approx. 100 k to ∞ Ω</td>
<td>Approx. 4 k to ∞ Ω</td>
<td>Approx. 15 k to ∞ Ω</td>
</tr>
<tr>
<td>Response time</td>
<td>Operate:80 ms max. Release:160 ms max.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable length (see note 1)</td>
<td>1 km max. 600 m max.</td>
<td>2 km max. 4 km max. 50 m max.</td>
<td>1 km max. 800 m max.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control output</td>
<td>1 A, 250 VAC (Inductive load: cos φ = 0.4) 3 A, 250 VAC (Resistive load)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>Operating: –10 to 55°C (–10 to 70°C for high-temperature controller)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient humidity</td>
<td>Operating: 45% to 85% RH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation resistance (see note 2)</td>
<td>100 MΩ min. (at 500 VDC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dielectric strength (see note 2)</td>
<td>2000 VAC, 50/60 Hz for 1 min.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life expectancy</td>
<td>Electrical: 100,000 operations min. Mechanical: 5,000,000 operations min.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>Approx. 155 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accessories</td>
<td>Hold-down clip PFC-N8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
1. The length when using completely insulated, 600-V, 3-conductor (0.75 mm²) cable type cables. Usable cable lengths will become shorter as the cable diameter or number of conductors becomes larger. For details, refer to Safety Precautions for Floatless Level Controllers.
2. The insulation resistance and dielectric strength indicate values between power terminals and Electrode terminals, between power terminals and contact terminals, and between Electrode terminals and contact terminals. For details, refer to Safety Precautions for Floatless Level Controllers.
3. Possible to use with 15 kΩ or less, however, this may cause reset failure.
4. 61F-GP-NH High-sensitivity Controller uses advanced operation.
 When the power supply voltage is applied, if there are some liquids between the electrodes (ground and operation electrodes), the internal relay will not operate.
 When the power supply voltage is applied, if there are no liquids between the electrodes (ground and operation electrodes), the internal relay will operate.
 If the advanced operation does not satisfy applications, consider using 61F-N8HY controller which uses sequential operation.
Internal Circuit Diagrams

61F-GP-N/-NT/-NL/-ND

- Power supply
- **Control circuit**

- S0 S1 E3
- 5 E1 Ta1 Tc1 Tb1
- 8 Ta2 Tc2 Tb2
- 24 V
- 8 V

61F-GP-NH

- Power supply
- **Control circuit**

- S0 S1 E3
- 5 E1 Ta1 Tc1 Tb1
- 8 Ta2 Tc2 Tb2
- 24 V
- 8 V

61F-GP-NR

- Power supply
- **Control circuit**

- S0 S1 E3
- 5 E1 Ta1 Tc1 Tb1
- 8 Ta2 Tc2 Tb2
- 24 V
- 8 V

Note: When applying a self-holding circuit, short between terminals 5 and 6 and use terminal 7 as E3.
Connections

Automatic Water Supply and Drainage Control

Automatic Water Supply Control

Connections
- **Commercial Voltage** R S T
- **MCCB**
- **Contactor**
- **Motor protection relay**
- **Water supply source**
- **Water tank**
- **Contactor**
- **Power supply**
- **Control circuit**
- **Reservoir**
- **PS-3S**

Note: Be sure to ground the common Electrode E3 (the longest Electrode).

Connection Sockets
- PF113A (Front-connecting)
- PL11 (Rear-connecting)

Principles of Operation

- **(Indicator ON)**
 - The pump stops when the water level reaches E1 (indicator ON) and starts when the water level drops below E2 (indicator OFF).

Note: The power supply depends on the specifications of the model.

Automatic Drainage Control

Connections
- **Commercial Voltage** R S T
- **MCCB**
- **Contactor**
- **Motor protection relay**
- **Water supply source**
- **Water tank**
- **Contactor**
- **Power supply**
- **Control circuit**
- **Reservoir**
- **PS-3S**

Note: Be sure to ground the common Electrode E3 (the longest Electrode).

Connection Sockets
- PF113A (Front-connecting)
- PL11 (Rear-connecting)

Principles of Operation

- **(Indicator ON)**
 - The pump starts when the water level reaches E1 (indicator ON) and stops when the water level drops below E2 (indicator OFF).
Liquid Level Indication

Compact, Plug-in Type

61F-GP-N

Dimensions:

Page 14

Connections

- **Lower limit**
 - Terminals 6 and 7, and terminals 10 and 11 on the lower-limit 61F-GP-N are shorted when the water level reaches E3 (indicator ON).
- **Intermediate**
 - Terminals 6 and 7, and terminals 10 and 11 on the intermediate 61F-GP-N are shorted when the water level reaches E2 (indicator ON).
- **Upper limit**
 - Terminals 6 and 7, and terminals 10 and 11 on the upper-limit 61F-GP-N are shorted when the water level reaches E1 (indicator ON).

Note: The power supply phases (terminals 3 to 9) can be matched to use the same ground for the common Electrode (the longest Electrode, terminal 4).

Principles of Operation

- Terminals 6 and 7, and terminals 10 and 11 on the lower-limit 61F-GP-N are shorted when the water level reaches E3 (indicator ON).
- Terminals 6 and 7, and terminals 10 and 11 on the intermediate 61F-GP-N are shorted when the water level reaches E2 (indicator ON).
- Terminals 6 and 7, and terminals 10 and 11 on the upper-limit 61F-GP-N are shorted when the water level reaches E1 (indicator ON).
Replacing 61F-G3N Functions (Automatic Water Supply Control with Abnormal Water Increase and Water Shortage Alarms)

Connections

Water shortage Pump control Full tank

Commercial Voltage

<table>
<thead>
<tr>
<th>R</th>
<th>S</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

MCCB

<table>
<thead>
<tr>
<th>Power supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 V</td>
</tr>
<tr>
<td>0 V</td>
</tr>
</tbody>
</table>

Control circuit

<table>
<thead>
<tr>
<th>U1</th>
<th>U2</th>
<th>U3</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>E2</td>
<td>E3</td>
</tr>
<tr>
<td>Lower limit</td>
<td>Alarm</td>
<td>Upper limit</td>
</tr>
</tbody>
</table>

Water tank

Motor protection relay

<table>
<thead>
<tr>
<th>Water supply source</th>
</tr>
</thead>
</table>

Contactor

Note: The power supply phases (terminals 3 to 9) can be matched to use the same ground for the common Electrode (the longest Electrode, terminal 4).

Principles of Operation

- The pump stops when the water level reaches E2 (U2 indicator ON) and starts when the water level drops below E3 (U2 indicator OFF).
- If the water level rises to E1 for any reason, the upper-limit indicator turns ON and the alarm sounds (U1 indicator ON).
- If the water level drops below E4 for any reason, the lower-limit indicator turns ON and the alarm sounds (U3 indicator OFF).

(See note.)
Two-Wire Connections
Automatic Water Supply and Drainage Control

Connections

<table>
<thead>
<tr>
<th>Automatic Water Supply Control</th>
<th>Automatic Drainage Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection Sockets</td>
<td>Connection Sockets</td>
</tr>
<tr>
<td>PF113 (Front-connecting)</td>
<td>PF113 (Front-connecting)</td>
</tr>
<tr>
<td>PL11 (Rear-connecting)</td>
<td>PL11 (Rear-connecting)</td>
</tr>
</tbody>
</table>

- Connect terminal 1 to the contactor's coil terminal.
- **Note:** The power supply depends on the specifications of the model.
- With 2-wire connections, only two wires are required between the 61F-GP-NR and Electrode Holder, but three wires are required for the Electrodes.
- The Electrode Holder must be specified for 2-wire connections. (Resistance R is built into Electrode Holders for 2-Wire Connections.)

Principles of Operation

Water supply

- Pump OFF
- E1 (Indicator ON)
- E2 (Indicator OFF)

The pump stops when the water level reaches E1 (indicator ON) and starts when the water level drops below E2 (indicator OFF).

Water drainage

- Pump ON
- E1 (Indicator ON)
- E2 (Indicator OFF)

The pump starts when the water level reaches E1 (indicator ON) and stops when the water level drops below E2 (indicator OFF).

Note:
- Be sure to ground the common Electrode E3 (the longest Electrode).
Connection with Three-phase Four-line Circuit

When supplying power from N-phase to the Controller in three-phase four-line circuit, refer to the following diagrams.

- **Line voltage** (R-S, S-T, or R-T): 380 or 415 VAC
- **Phase voltage** (N-R, N-S, or N-T): 220 or 240 VAC

61F-GP-N □ 220 or 240 VAC

Note:
1. The diagram shows the connections for the water supply. When draining, change the connection from terminal 1 to terminal 11.
2. Be sure to ground terminal 4.
Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>General-purpose Controller</th>
<th>Long-distance Controllers</th>
<th>High-sensitivity Controllers</th>
<th>Low-sensitivity Controller</th>
<th>Two-wire Controller</th>
<th>Variable Sensitivity Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlling materials and operating conditions</td>
<td>61F-GP-N8</td>
<td>61F-GP-N8L 2KM (for 2 km)</td>
<td>61F-GP-N8H</td>
<td>61F-GP-N8D</td>
<td>61F-GP-N8HY</td>
<td>61F-GP-N8-V50</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>24, 100, 110, 120, 200, 220, 230 or 240 VAC; 50/60 Hz</td>
<td>24, 100, 110, 220 or 240 VAC; 50/60 Hz</td>
<td>For control of ordinary purified water or sewage water</td>
<td>Approx. 3.5 VA max.</td>
<td>For control of cases where variable sensitivity control is required such as detection of froth on the surface of a liquid, control of soil moisture content, or detection of degree of water pollution</td>
<td></td>
</tr>
<tr>
<td>Operating voltage range</td>
<td>85% to 110% of rated voltage</td>
<td>24 VAC</td>
<td>For control of ordinary purified water or sewage water used in combination with Two-wire Electrode Holder (incorporating a resistor of 6.8 kΩ)</td>
<td>Approx. 3 mA AC max.</td>
<td>0 to 50 kΩ (Variable)</td>
<td></td>
</tr>
<tr>
<td>Interelectrode voltage</td>
<td>8 VAC</td>
<td>24 VAC</td>
<td>8 VAC</td>
<td>8 VAC</td>
<td>24 VAC</td>
<td></td>
</tr>
<tr>
<td>Interelectrode current</td>
<td>Approx. 1 mA AC max.</td>
<td>Approx. 0.4 mA AC max.</td>
<td>Approx. 1 mA AC max.</td>
<td>Approx. 3 mA AC max.</td>
<td>0 to approx. 4 kΩ</td>
<td></td>
</tr>
<tr>
<td>Power consumption</td>
<td>Approx. 3.5 VA max.</td>
<td>Approx. 15 kΩ to 80 kΩ</td>
<td>Approx. 300 k to ∞Ω</td>
<td>Approx. 4 k to ∞Ω</td>
<td>Operating resistance +50 kΩ max.</td>
<td></td>
</tr>
<tr>
<td>Interelectrode resistance</td>
<td>0 to approx. 4 kΩ</td>
<td>0 to 1.3 kΩ (for 2 km)</td>
<td>4 k to ∞Ω (for 2 km)</td>
<td>4 k to ∞Ω (for 4 km)</td>
<td>Approx. 15 k to ∞Ω</td>
<td></td>
</tr>
<tr>
<td>Interelectrode release resistance</td>
<td>Approx. 15 k to ∞Ω</td>
<td>Approx. 15 kΩ to ∞Ω</td>
<td>Approx. 300 k to ∞Ω</td>
<td>Approx. 4 k to ∞Ω</td>
<td>Approx. 15 k to ∞Ω</td>
<td></td>
</tr>
<tr>
<td>Response time</td>
<td>Operate: 80 ms max.</td>
<td>Operate: 80 ms max.</td>
<td>Operate: 80 ms max.</td>
<td>800 m max.</td>
<td>Operating resistance +50 kΩ max.</td>
<td></td>
</tr>
<tr>
<td>Cable length (see note 1)</td>
<td>1 km max.</td>
<td>2 km max.</td>
<td>50 m max.</td>
<td>1 km max.</td>
<td>800 m max.</td>
<td></td>
</tr>
<tr>
<td>Control output</td>
<td>1 A, 250 VAC (Inductive load: cosφ = 0.4)</td>
<td>3 A, 250 VAC (Resistive load)</td>
<td>For control of liq- uids with high specific resistance such as salt water, sewage water, acid chemicals, alkali chemicals</td>
<td>For control of liq- uids with low specific resistance such as salt water, sewage water, acid chemicals, alkali chemicals</td>
<td>For control of liq- uids with low specific resistance such as salt water, sewage water, acid chemicals, alkali chemicals</td>
<td></td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>Operating: –10 to 55°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient humidity</td>
<td>Operating: 45% to 85% RH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation resistance (see note 2)</td>
<td>100 MΩ min. (at 500 VDC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dielectric strength (see note 2)</td>
<td>2000 VAC, 50/60 Hz for 1 min.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life expectancy</td>
<td>Electrical: 100,000 operations min.</td>
<td>Mechanical: 5,000,000 operations min.</td>
<td>For control of liq- uids with high specific resistance such as salt water, sewage water, acid chemicals, alkali chemicals</td>
<td>For control of liq- uids with low specific resistance such as salt water, sewage water, acid chemicals, alkali chemicals</td>
<td>For control of liq- uids with low specific resistance such as salt water, sewage water, acid chemicals, alkali chemicals</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>Approx. 155 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accessories</td>
<td>Hold-down clip PFC-N8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: 1. The length when using completely-insulated, 600-V, 3-conductor (0.75 mm²) cabtire cables. Usable cable lengths will become shorter as the cable diameter or number of conductors becomes larger.
2. The insulation resistance and dielectric strength indicate values between power terminals and Electrode terminals, between power terminals and contact terminals, and between Electrode terminals and contact terminals.
3. Possible to use with 15 kΩ or less, however, this may cause reset failure.
4. 61F-GP-N8H/-N8Y High-sensitivity Controllers use advanced operation.
When the power supply voltage is applied, if there are some liquids between the electrodes (ground and operation electrodes), the internal relay will not operate.
When the power supply voltage is applied, if there are no liquids between the electrodes (ground and operation electrodes), the internal relay will operate.
If the advanced operation does not satisfy applications, consider using 61F-N8HY controller which uses sequential operation.
Internal Circuit Diagrams

61F-GP-N8/-N8L/-N8D/-N8HY

Power supply: 24 V
Control circuit: 8 V (see note)

61F-GP-N8H

Power supply: 24 V
Control circuit: 24 V

61F-GP-N8R

Power supply: 24 V
Control circuit: 8 V

Note: 24 V for the 61F-GP-N8HY.

61F-GP-N8Y

Power supply: 24 V
Control circuit: 8 V

61F-GP-N8-V50

Power supply: 24 V
Control circuit: 24 V

OMRON
Automatic Water Supply and Drainage Control

Compact, Plug-in Type

61F-GP-N8

Automatic Water Supply Control

<table>
<thead>
<tr>
<th>Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Voltage</td>
</tr>
<tr>
<td>MCCB</td>
</tr>
<tr>
<td>Contactor</td>
</tr>
<tr>
<td>Motor protection relay</td>
</tr>
<tr>
<td>Water supply source</td>
</tr>
<tr>
<td>Water level</td>
</tr>
</tbody>
</table>

Note: Be sure to ground the common Electrode E3 (the longest Electrode).

Connection Sockets
- PF083A (Front-connecting)
- PL08 (Rear-connecting)

- Connect terminal 2 to the contactor’s coil terminal.

Note: The power supply depends on the specifications of the model.

Automatic Drainage Control

<table>
<thead>
<tr>
<th>Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Voltage</td>
</tr>
<tr>
<td>MCCB</td>
</tr>
<tr>
<td>Contactor</td>
</tr>
<tr>
<td>Motor protection relay</td>
</tr>
<tr>
<td>Waste water tank</td>
</tr>
<tr>
<td>Water level</td>
</tr>
</tbody>
</table>

Note: Be sure to ground the common Electrode E3 (the longest Electrode).

Connection Sockets
- PF083A (Front-connecting)
- PL08 (Rear-connecting)

- Connect terminal 3 to the contactor’s coil terminal.

Note: The power supply depends on the specifications of the model.

Principles of Operation

Automatic Water Supply Control

- The pump stops when the water level reaches E1 (indicator ON) and starts when the water level drops below E2 (indicator OFF).

Automatic Drainage Control

- The pump starts when the water level reaches E1 (indicator ON) and stops when the water level drops below E2 (indicator OFF).
Two-Wire Connections
Automatic Water Supply and Drainage Control

Compact, Plug-in Type
61F-GP-N8R

Dimensions:
page 14

Water Supply

Automatic Drainage

Note: Be sure to ground the common Electrode E3 (the longest Electrode).

- Connect terminal 2 to the contactor’s coil terminal.
- Note: The power supply depends on the specifications of the model.
- With 2-wire connections, only two wires are required between the 61F-GP-N8R and Electrode Holder, but three wires are required for the Electrodes.
- The Electrode Holder must be specified for 2-wire connections. (Resistance R is built into Electrode Holders for 2-Wire Connections.)

Principles of Operation

The pump stops when the water level reaches E1 (indicator ON) and starts when the water level drops below E2 (indicator OFF).

Principles of Operation

The pump starts when the water level reaches E1 (indicator ON) and stops when the water level drops below E2 (indicator OFF).
Connection with Three-phase Four-line Circuit

When supplying power from N-phase to the Controller in three-phase four-line circuit, refer to the following diagrams.

Line voltage (R-S, S-T, or R-T): 380 or 415 VAC
Phase voltage (N-R, N-S, or N-T): 220 or 240 VAC

61F-GP-N8，220 or 240 VAC

Note: Be sure to ground terminal 1.
Dimensions

Note: All units are in millimeters unless otherwise indicated.

61F-GP-N, -NT, -NL, -NH, -ND, -NR, -N -TDL, -N14, -N15, -NH3

When mounting a Display Unit to a PF113A Surface-mounting Socket, secure the PF113A with the groove facing toward the bottom and then connect the 61F-GP-N the PFC-N8 accessory.

61F-GP-N8, -N8L, -N8H, -N8HY, -N8D, -N8R

Use a PFC-N8 Mounting Bracket to mount the Level Controller to a PF083A Rail-mounted Socket.

Safety Precautions

Refer to Safety Precautions for All Level Controllers.

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

In the interest of product improvement, specifications are subject to change without notice.
WARRANTY
OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON.

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

LIMITATIONS OF LIABILITY
OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY.

In no event shall the responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted.

IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

Application Considerations
SUITABILITY FOR USE
OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of products in the customer's application or use of the products.

At the customer's request, OMRON will provide applicable third party certification documents identifying ratings and limitations of use that apply to the products. This information by itself is not sufficient for a complete determination of the suitability of the products in combination with the end product, machine, system, or other application or use.

The following are some examples of applications for which particular attention must be given. This is not intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses listed may be suitable for the products:

- Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this catalog.
- Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject to separate industry or government regulations.
- Systems, machines, and equipment that could present a risk to life or property.

Please know and observe all prohibitions of use applicable to the products.

NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCTS ARE PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

PROGRAMMABLE PRODUCTS
OMRON shall not be responsible for the user's programming of a programmable product, or any consequence thereof.

Disclaimers
CHANGE IN SPECIFICATIONS
Product specifications and accessories may be changed at any time based on improvements and other reasons.

It is our practice to change model numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the products may be changed without any notice. When in doubt, special model numbers may be assigned to fix or establish key specifications for your application on your request. Please consult with your OMRON representative at any time to confirm actual specifications of purchased products.

DIMENSIONS AND WEIGHTS
Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when tolerances are shown.

PERFORMANCE DATA
Performance data given in this catalog is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and Limitations of Liability.

ERRORS AND OMISSIONS
The information in this document has been carefully checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.